Our work on how LLMs store relations selected as NeurIPS Spotlight paper

Our paper The Structure of Relation Decoding Linear Operators in Large Language Models by Miranda Anna Christ, Adrián Csiszárik, Gergely Becsó, and Dániel Varga was accepted at the NeurIPS 2025 conference as a Spotlight paper (~3% of submissions).

Healthcare

Prevention & Prediction

Patient Pathways

Patient Pathway Mission

Leveraging Hungary’s healthcare data assets for prevention, prediction, and decision support.

Önfelügyelt reprezentációtanulás komplex adatokon (in hungarian)

Event
December 6, 2023
events
A reprezentációtanulás, vagyis adatokból magasabb szintű ismeret, „tudás” kinyerése a mesterséges intelligencia kutatásának egy kiemelt kérdése. Új, tudományos és társadalmi hasznosulás szempontjából is jelentős terület az önfelügyelt reprezentáció tanulás, amely a felügyelt tanuláshoz képest jóval nagyobb léptékű adatbázisokon, széles körben alkalmazható nagy modellek tanítását teszi lehetővé. Nagy nyelvi modellek tanításának mára alapeleme az önfelügyelt tanítás, és gépi látásban is több sikeres megközelítést publikáltak. Kevesebb kutatás irányul azonban arra, hogy a vizuális önfelügyelt előtanítással kialakított hálók összetett gépi látási feladatokon (pl.
December 6, 2023

Mode Combinability: Exploring Convex Combinations of Permutation Aligned Models (in hungarian)

Event
November 22, 2023
events
Mode Combinability: Exploring Convex Combinations of Permutation Aligned Models Adrián Csiszárik, Melinda F. Kiss, Péter Kőrösi-Szabó, Márton Muntag, Gergely Papp, Dániel Varga As recently discovered (Ainsworth-Hayase-Srinivasa 2022 and others), two wide neural networks with identical network topology and trained on similar data can be permutation-aligned. That is, we can shuffle their neurons (channels) so that linearly interpolating between the two networks in parameter space becomes a meaningful operation (linear mode connectivity).
November 22, 2023

Targeted Adversarial Attacks on Generalizable Neural Radiance Fields

Event
November 15, 2023
events
Contemporary robotics relies heavily on addressing key challenges like odometry, localization, depth perception, semantic segmentation, the creation of new viewpoints, and navigation with precision and efficiency. Implicit neural representation techniques, notably Neural Radiance Fields (NeRFs) and Generalizable NeRFs (GeNeRFs), are increasingly employed to tackle these issues. This talk focuses on exposing certain critical, but subtle flaws inherent in GeNeRFs. Adversarial attacks, while not new to various machine learning frameworks, present a significant threat.
November 15, 2023

Dániel Varga

Solving a Conjecture of Erdős

Blog Post
October 6, 2023
posts
Sets of points with the property that no two elements of the set are one unit distance apart are called unit-distance avoiding sets. If a point is in the unit-distance avoiding set, then the unit circle drawn around it does not intersect the set, but there is no restriction regarding the interior and the exterior of this circle. When searching for unit-distance avoiding sets with high densities, the following construction naturally comes to mind: an open disc with a unit diameter is unit-distance avoiding, as all distances between its two points are less than 1.
October 6, 2023
The Team
The AI group at the institute brings together experts with backgrounds in both industry and academia. We place equal emphasis on theoretical foundations, thorough experimentation, and practical applications. Our close collaboration ensures a continuous exchange of knowledge between scientific research and applied projects.
Balázs Szegedy
Mathematical Theory
Attila Börcs, PhD
NLP, Modeling, MLOps
Adrián Csiszárik
Representation Learning, Foundations
Győző Csóka
NLP, MLOps
Domonkos Czifra
NLP, Foundations
Botond Forrai
Modeling
Péter Kőrösi-Szabó
Modeling
Gábor Kovács
NLP, Modeling
Judit Laki, MD PhD
Healthcare
Márton Muntag
Time Series, NLP, Modeling
Dávid Terjék
Generalization, Mathematical Theory
Dániel Varga
Foundations, Computer aided proofs
Pál Zsámboki
Reinforcement Learning, Geometric Deep Learning
Zsolt Zombori
Formal Reasoning
Péter Ágoston
Combinatory, Geometry
Beatrix Mária Benkő
Representation Learning
Jakab Buda
NLP
Diego González Sánchez
Generalization, Mathematical Theory
Melinda F. Kiss
Representation Learning
Ákos Matszangosz
Topology, Foundations
Alex Olár
Foundations
Gergely Papp
Modeling
Open Positions
The Rényi AI group is actively recruiting both theorists and practitioners.
Announcement: December 1, 2023
Deadline: rolling
applications
Rényi Institute is seeking Machine Learning Engineers to join our AI Research & Development team. Preferred Qualifications: • MLOps experience (especially in cloud environments) • Industry experience working on ML solutions
Announcement: December 1, 2023
Deadline: rolling
theory, applications
Rényi Institute is seeking Research Scientists to join our AI Research & Development team. You will have the privilege to work at a renowned academic institute and do what you love: do research and publish in the field of machine learning / deep learning.
Rényi AI - Building bridges between mathematics and artificial intelligence.