Events
Rácz Dániel (SZTAKI): Convergence and Generalization
Deep Learning Seminar
April 3, 2024 16:00
Hybrid: Rényi Tondós Room + Zoom
I will introduce some theoretical results related to the convergence and generalization capabilities of neural networks, in light of articles published at the NeurIPS 2023 conference in December. The first part of the presentation will summarize some important, earlier results, and then it will cover numerous articles based on these, which were presented at NeurIPS. The aim of the presentation is to provide a comprehensive overview of the current state of the field and the currently popular research directions.
Juhász András (Oxford): Knot theory and AI
Deep Learning Seminar
March 20, 2024 16:00
Hybrid: Rényi Tondós Room + Zoom
I will overview some applications of supervised and reinforcement learning methods to knot theory that might be useful in other areas of mathematics.
András Kalapos (BME TMIT): Önfelügyelt reprezentációtanulás komplex adatokon (in hungarian)
Deep Learning Seminar
December 6, 2023 16:00
Hybrid: Rényi Tondós Room + Zoom
A reprezentációtanulás, vagyis adatokból magasabb szintű ismeret, „tudás” kinyerése a mesterséges intelligencia kutatásának egy kiemelt kérdése. Új, tudományos és társadalmi hasznosulás szempontjából is jelentős terület az önfelügyelt reprezentáció tanulás, amely a felügyelt tanuláshoz képest jóval nagyobb léptékű adatbázisokon, széles körben alkalmazható nagy modellek tanítását teszi lehetővé. Nagy nyelvi modellek tanításának mára alapeleme az önfelügyelt tanítás, és gépi látásban is több sikeres megközelítést publikáltak. Kevesebb kutatás irányul azonban arra, hogy a vizuális önfelügyelt előtanítással kialakított hálók összetett gépi látási feladatokon (pl.
Márton Muntág (Rényi): Mode Combinability: Exploring Convex Combinations of Permutation Aligned Models (in hungarian)
Deep Learning Seminar
November 22, 2023 16:00
Hybrid: Rényi Tondós Room + Zoom
Mode Combinability: Exploring Convex Combinations of Permutation Aligned Models Adrián Csiszárik, Melinda F. Kiss, Péter Kőrösi-Szabó, Márton Muntag, Gergely Papp, Dániel Varga
As recently discovered (Ainsworth-Hayase-Srinivasa 2022 and others), two wide neural networks with identical network topology and trained on similar data can be permutation-aligned. That is, we can shuffle their neurons (channels) so that linearly interpolating between the two networks in parameter space becomes a meaningful operation (linear mode connectivity).
András Horváth (PPKE): Targeted Adversarial Attacks on Generalizable Neural Radiance Fields
Deep Learning Seminar
November 15, 2023 16:00
Hybrid: Rényi Tondós Room + Zoom
Contemporary robotics relies heavily on addressing key challenges like odometry, localization, depth perception, semantic segmentation, the creation of new viewpoints, and navigation with precision and efficiency. Implicit neural representation techniques, notably Neural Radiance Fields (NeRFs) and Generalizable NeRFs (GeNeRFs), are increasingly employed to tackle these issues.
This talk focuses on exposing certain critical, but subtle flaws inherent in GeNeRFs. Adversarial attacks, while not new to various machine learning frameworks, present a significant threat.